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* Curve Modeling
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* Bézier curve
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e Surface Modeling
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Introduction

 Raw data is very popularin
many experimental study and
usually it need fitting before it
can be understand well.
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Interpolation and approximation

* Interpolation: When the curve passes
through all the control points then it
is called as Interpolation.

* Approximation: When the curve does
not passes through the control points
then it is called as approximation.

Computer Graphics

~

Control points



Interpolation case

* For example, suppose we have a table like this, which gives
some values of an unknown function f.
1 —

f(x) .
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0. 8415
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0.1411 0 ¢ | | | | | |
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Interpolation provides a means of estimating the function at intermediate
points, such as x = 2.5.
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Piecewise constant interpolation

* The simplest interpolation method is to locate the nearest data
value, and assign the same value.
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Linear interpolation

* Generally, linear interpolation takes two data points, say (x,,y,)
and (x,,y,), and the interpolant is given by:

Y= Yo+ (Up — Ya) at the point (z,y)
Tp — Ty

Y—Ya _ T— 1
Uy — UYa Ty — Ty
Y —Ya — Up — Ua
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Polynomial interpolation

* Polynomial interpolation is a generalization of linear interpolation.
Note that the linear interpolation is a linear function. We now
replace this interpolation with a polynomial of higher degree.

* The following sixth degree polynomial goes through all the seven

points: L

f(x)= —0.0001521x° + 0.003130x°
+0.07321x* —=0.3577x° | | | | |
+0.2255x° +0.9038x 1 2 3\ 4 s
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Approximation — Least squares fitting

 Linear least squares

e Afitting model is a linear one when the model comprises a
linear combination of the parameters, i.e.,

0 ) =3 5,9,

where the function ¢; is a function of x.
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Least squares fitting example

* As aresult of an experiment, four (x, y) data points were obtained, (1, 6), (2,
5), (3, 7), and (4, 10).

* We hope to find a line y = ; + [,x that best fits these four points. In
other words, we would like to find the numbers ; and 3, that
approximately solve the over-determined linear system

B +1p5, =6, [ +20,=5
p+36, =17, [ +4p5,=10.

. . . " " 10f L .lData
of four equations in two unknowns in some "best" sense. of| —curverit| )/
* Aresidual is defined as the difference between _ N
the actual value of the dependent variable and "t
E-
the value predicted by the model. N 74 S
=y - (. A

Computer Graphics




Least squares fitting example

 The "error", at each point, between the curve fit and the data is the difference
between the right- and left-hand sides of the equations above. The least squares
approach to solving this problem is to try to make the sum of the squares of these
errors as small as possible; that is, to find the minimum of the function

S(B, 8,) =[6-(B+18,)] +[5-(B+25,)]
+[7-(B,+38,)] +[10- (8, +45,)]
=487 +308; + 20,8, —563,—154 3, + 210
* The minimum is determined by calculating the partial derivatives of S(fy, f5) with
respect to f; and 5, and setting them to zero

S _o_8ps +203, —56, 2>

8.3, 0.3,

—0=20p83, +6083, —154.

* This results in a system of two equations in two unknowns, called the normal
equations, which give, when solved f; = 3.5,6, = 1.4,

and the equation y = 3.5 + 1.4x of the line of best fit.
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Approximation — Quadratic least squares fitting

Importantly, in linear least squares, we are not restricted to using a line as the model
as in the above example. For instance, we could have chosen the restricted
quadratic model y = B;x2. This model is still linear in the §; parameter, so we can
still perform the same analysis, constructing a system of equations from the data

points: 62181(1)21 52131(2)2
[ = 181(3)2’ 10= 181(4)2

The partial derivatives with respect to

the parameters (this time there is only one)
are again computed and set to O:

B _0=708p, 498
op;

1

and solved ; = 0.703x?

leading to the resulting best fit model y = 0.703x?

Computer Graphics




General - Least Square Methods

 How to draw a curve approximately fitting to raw data?

* Raw data usually has noise. The values of dependent variables vary
even though all the independent variables are constant. Therefore, the
estimation of the trend the dependent variables is needed. This process
is called regression or curve fitting.

* The estimated equation (matrix) satisfy the raw data. However, the
equation is not usually unique, and the equation or curve with a
minimal deviation from all data points is desirable.

* This desirable best-fitting equation can be obtained by least square
method which uses the minimal sum of the deviations squared ({RZHRY
Me5%0) from a given set of data.
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Least square formulation

* If you have a data set (x,y,), (x,, ¥,), ---, (X, y,) and the

best curve f(x) should be with the property as follows

Minimum Least g _ i (f (Xi) _ yi)Z
i=1

Sqguare error

AV
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Least square line

e Whenn=2E=0

(X5Y>)

(X,Y1)

*
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Least square line

* When n>2, if (x,y,), (x5, ¥,), ..., (x,, y,) are collinear,

E=0

(X Y0

(X1/ yl)

*
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Least square line

* Line equation y = kx+D

yt

*
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Least square line

« Howtogetkand b ?

rle-I-ny1 _Xl 1 _yl_

< sz + b — y2 or X2 1 k _ y2
-1 LA :

kx, +b=y, X, 1] Y, |

Mostly an approximation solution can exist, when the rank

of the coefficient matrix is 2, which is the column number.
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Least square line

« Howtogetkand b ?

AV
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Least square line

« Howtogetkand b ?

ZX zxk 3 xy
A

The unique solution of this system k and b can satisfy the following
condition and a least square line is obtained.

inimm €= 3" (£(x) - ¥,)’
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Least square line

* For parametric definition, the least square line problem is now
to find @,,a,,0,,b, satisfying

Minimum E = i[(x(ti) — Xi)2 + (y(tu) - yi)z]

* Ways to choose t;,1,,---, 1 will affect the result.

*
i&i@:) Computer Graphics




Least square curve

* Why we need least square curve? When raw data is too
complicated, least square line is not good enough.

E is too large
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Least square curve

* In more general, T(X)eFR, can be a polynomial of
degree k

f(X)=a,+aXx+aXx" +---+ax"

* The problem becomes now to find 4,,4d,, -+, d,
satisfying the following

inimum E =" (f (x) -,

AV
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Least square curve

« Systems to be solved are
A, +aAX +AX A X =Y,

2 K
d, +a X, +a, X, +---+aq X, =Y,

2 k
d, +a X, + X +--+q X, =Y,

And 1 x x2 - xa] [v]
2 k
Xy, Xy o Xy Y _ Y,
2
_1 X, X 1 | Yn

The coefficient matrix M : nx (k+ 1)
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Least square curve

e Whenn > k and rank of M is k + 1, we solve the following
system to get the least square curve

1 1 1
X, X, X
k k k
Xl X2 X3

Computer Graphics

111 x X x[ap] [1 1 1
2 k

X X2 X Nl _ | XK X X
2 k k k k

X | _1 X, X, Xp la] [ X% X X

(M"TM)X =MD
r

The coefficient matrix MTM : (k+1)x (k+ 1)

Y1
Y2

Yn_




Least square curve

* If x; # x, # -+ # x, and n > k, we can always find the
unique solution of the system, and it will be the least square

solution to the original system.

The curve is much better than the
line to satisfy the raw data
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Outline

* Interpolation and Approximation

* Curve Modeling
* Parametric curve
e Cubic Hermite interpolation
* Bézier curve
e B-Spline

e Surface Modeling
e Bézier surface
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Classification of curves

y= X2+5X+3 > y=f(x)

(explicit curve)

(X-X)? + (y-ycy—r*=0 » 860

(implicit curve)

X=X,+r-cosé x = x(?)

y=y.+r-sin@ Y =y()

(parametric curve)

AVSY
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Classification of curves

implicit curve

* planar: f(x,y)=0: X2+y2=36
x2+y2-36=0

(o]
N

3D curves

rf(xayaz) = 09
g(x,y,2)=0.

—— —
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Implicit curves

* Advantage of implicit curve:

* To a point (x,y), it is easy to detect whether f(x,y) is >0 ,<0 or =O0.

* Disadvantage of implicit curve:

e To a curve f(x,y) =0, it is difficult to find the point on it.

f>0 Tangent Vector at p

Mormal Vector at p

N

Point p=(xp.,yp)

f(x,y)<0
(inside)

f(x.y)=0

f(x,y)=0 (outside)

L
=
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Parametric curves

e Variable is a scalar, and function is a vector:
C=C(u)=[x(u), y(u), z(1)],

e Every element of the vector is a function of the variable (the
parameter)

[x(u), y(u), z(u)]

*
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Parametric curves

given a curve C(u), its tangent is T=C’(u).

difference of arc length:
(ds)?=(dx)*+(dy)*+(dz)*=((x')**+(y)**+(z)*)du

* Arc length: s =£: ds =J:: \/(Jvc")2 +(y")2 +(z')2du
y

(). e

Ay

*
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Least square parametric curve

e Parametric definition of the curve (3D)

X(t)=a, +at+at’+---+at
y(t) =b, +bt+b,t* +---+b t*
Z2(t) =C, +Ct+C,t° +---+ .t

.

* Square Error

: :i[(x(ti)_xi)z +(Y(ti)_Yi)2 +(Z(ti)_zi)2]

AVSY
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Least square curve — general case

* General method to solve the problem is based on the
following

GE _, 0E _, OE _

.  — Y, — ’__O1i:O’°“’k
oa. ob. OC.

* The least square solution can be got by solving a related
linear system

*
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Least square parametric curve

* Remark: the different choice of t,, t,, ..., t, will lead

different result.

« Chord length (5%%) parameter is one of the best.

t =0
L; :ti—1+HPi — Pi—lH
i:2’...’n

*
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Least square parametric curve

FIMsL KA
t, =0
by =ik +|APi—l i=12,-n Afi=F, -k

IXFRZ BEE A SE  E T BUAE A% 52K ) 20 A
oL, HEs e AR BUE R AL 5L K I AT AN ST |
TR 00 N R 5 2 B B B 1) i
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Outline

* Interpolation and Approximation

* Curve Modeling
* Parametric curve
e Cubic Hermite interpolation
e Bézier curve
e B-Spline

e Surface Modeling
e Bézier surface
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Splines - History

e Draftsman use ‘ducks’ and strips of wood (splines) to draw
curves

* Wood splines have second-order continuity

* And pass through the control points

A Duck (weight) Ducks trace out curve
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Spline in industry
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Interpolation

* Goal: interpolate values
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Nearest neighbor interpolation

Problem: values not continuous
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Linear interpolation

Problem: derivatives not continuous

Computer Graphics




Smooth interpolation?

T

NN interpolation Linear interpolation Smooth curve




Cubic Hermite Interpolation

P(0) P'(0) Hermit‘e il 2% & 1H
. p(1) it 44 5 28 40
f O TR R DA=RN

_ \Tf L) EP(0). P(1)LL K

; : 7 A 35 5 4 1 6]

Given: value and derivatives at 2 points e
LR EP'(0). P'(1)

KA IR Hh 2

s
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Cubic Hermite Interpolation

* Assume Cubic polynomial
P(t)=at’+bt*+ct+d
* Solve for coefficients:
P(0) = hg =d

P(l)=hy=a+b+c+d

*
i&i@:) Computer Graphics



Cubic Hermite Interpolation

* Cubic polynomial
P(t)=at’+bt* +ct+d
P'(t) = 3at® +2bt + c

e Solve for coefficients:

P(0) = hg = d

P(l)=h,=a+b+c+d
P'(0)

P(0)
P'(0) = hy = /( P)
P'(1)=hg=3a+2b+c T\ @

AVSY
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Matrix Representation of Solution

ho = d
hy =
ho = ¢
]'!-3 —

AVSY
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a+b4+c4+d

3a + 2b + ¢

ho
h‘:l
}12
hfg

| —

0

—_ = =




Solve fora, b, ¢, d

e Matrix Inverse

AVSY
i§Pj) Computer Graphics

h 1
/ Lo
hs

ho

—

0

0 0
1 1
0 1
2 1

(1

d

/ L0
h 1
}'Lg
hg




Matrix Transpose

Transpose (AB)T — BTAT

00 0 1 a 0 1 0 3
1 1 1 {) n 1 o0 2
0 0 1 0 ¢ =la b c d] 0 1 1 1
'3 2 1 0 |d)] 11 0 0
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Matrix Representation of Polynomials

* Cubic polynomial

P(t)=at’+bt* +ct+d

‘ t0=1

- 43
t?
P(T)z{(f b(‘d] ;
1

AV
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Insert identity matrix

ho 0 0 0 1 a 3
hy | |1 1 1 b 2
e | 10O 0 1 0 ¢ Pit)=la b ¢ d] ¢
hs 3 1 0 d 1

| |
01 0 371 2 =3 0 1]7[¢#H]
(a b e d) 0 1 0 2 —2 3} 0 0 t2
’ 0 1 1 1 1 -2 1 0 {
1 1 0 0f[ 1 -1 0 O0][ 1
L | J
|
1 0 0 0]
01 0 0
00 1 0
(0 0 0 1

Computer Graphics




Change Basis

01 0 37 2 =3 0 1]7]¢
[a b e d] 0 1 0 2 ~-2 3 0 0 t*
0 0 1 1 1 1 =2 1 0 t
1100 1 =1 001
1 J | 5 J
( |
[ hn h] hg h_—; ] i !f{p{” |
Hy (1)
(1)
| Hy(t) |
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Hermite Basis Functions

[ Ho(t) | [ 2 -3 0 1 ][]
Hi(t) | | =2 3 0 0 t2
Ho(t) | 1 =2 1 0 t
CHs(t) | | 1 -1 0 0] [1

Hy(t) = 2t% — 32 + 1
Hi(t) = —2t° + 3t°
Hy(t) =13 — 212 + ¢

Hi(t) =% —¢°
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Hermite Basis Functions

r’ Ho(t)
[ a b ¢ d ] f; = [ ho Iy ho Dy ] gigg
L H(t)
P(t)=ZhiHi(t) Pl)=h;=a+b+c+d
t=0
P,(O) — hQ =C
P'(1) =hg=3a+2b+c

*
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Hermite Basis Functions

|__Ho(v H, () Ho(t) = 2t — 312 + 1

H,(t) = —2t3 + 3t*

Hoy(t) =t> —2t* +

Ha(t) = t7 — t*

H5(t)

Below are the 4 graphs of the 4 functions

—

(all graphs except the 4th have been plotted from 0,0 to 1,1)
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Case

e P(t) =(2t3-3t2+ 1) p0
+(t3-2t2 + t) mO

+ (-2t3 + 3t?) p1

+ (t3-t?) ml %

mo

t [0, 1]

*
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Case

* The derivatives and the shape of Hermite curves
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Outline

* Interpolation and Approximation

* Curve Modeling
* Parametric curve
e Cubic Hermite interpolation
e Bézier curve
e B-Spline

e Surface Modeling
e Bézier surface
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Bézier curve

* A Bézier curve is a parametric curve frequently used in
computer graphics and related fields.

Mirrors

Tailgates
Trunk Lids

Header &
Nose Panels
1. Tail
Radiator il N et
Supporis \ \———
>, / Bumpers

Grilles ' -
A/C

Condensers

g
\

Headlights Fﬁ

Radiators W

Bumpers . Doors
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The definition of Bézier curve

* Bézier curve AR 2 HIAFIEEL ( Harmonic functions ) 1RIEIEHI =
( Control points ) fR{E4ERk. ESEAEWNT .

o) = Zn:BB,.’n(t) , te[0,1]
i=0

o FRXInrsm=, BEGn+ 1. HY, P =0,1..n)FREHIES
B + INRREIE ; B, (t)/9{EEHB ( Bernstein ) EiFE] , HZ
IMNTRA

(l—t)nl, l'—‘O’ 1

n!
‘Bi,n(t)"' l (f‘l"l)'

*
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Intuition for Bezier curves

» Keep on cutting corners to make a “smoother” curve

* |n the limit, the curve becomes smooth
P1_
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Linear Bézier curve

 Linear polynomial (—xZ2Iiz{) has two control points, the
matrix representation is in the following:

Q(t) = iBBi,I ()= POBOJ(f) + PlBl,l )

=(1-1)P, + 1P, , t€[0,1]
It I I
=l P P

e Actually, itis a line.

t=0 oF,
n!

$1-0"", =0, 1...n
i!(n—z’)!( )

Bi,n ()=
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Quadratic Bézier curve

e Quadratic polynomial (—JRZZINT,) has 3 control points, the
math formula is as follows:

0(t) =Y PB,,(t)= BBy, (1) + BB ,(t)+ P,B, (1)

=(1-1)*B, +2t(1-t)P, +*P, , te[0,1]
=(P,—2P+P)t* +2(B-P)t+P,

* Quadric Bézier curve is parabola , It’s matrix representation:

I -2 1 P
o =[" ¢ 1|=2 2 0| R, re[o,]
1 0 "0 P,

oP, aP,
Q,

o t=.25 P, oF, t=0 oP,
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Cubic Bézier curve

* Cubic polynomial (—/RZZIQTL,) has 4 control points, the math
formula is as follows:

o) = il’iBi’3 ()= FyB, (1) + BB, ;(t) + B,B,,(1) + BB ,(t)

, te[0,1]
=(1-t)’ P, +3t(1-£)* B +3*(1-1)P, + 'R,
: : -1 3 -3 1][B]
* The matrix representation: s g 380 5
I P - Y\, telo,l
on=1 ¢ ¢« 1 , | oll 2, [0,1]
|1 0 0 O0j&]

Computer Graphics




Bernstein Basis Functions

« fR¥EBernsteinZINTHARL T =K BézierlZA—AEHE , BiFRI=7FBézier
HhZLAVEFORER , BD -

By ()=(1-1)’
B (t)=3t(1-1)’
32,3 (N =3(1-1)
By (1) = £

0.0 0.2 0.4 0.6 0.8 1.0

The basis functions of cubic Bézier curve
on therange tin [0,1]
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High-order Bézier curve

* For fourth-order curves one can construct intermediate
points Q,, Q,, Q, & Q; that describe linear Bézier curves,
points R,, R; & R, that describe quadratic Bézier curves, and
points S, & S, that describe cubic Bézier curves:

oP,

of,
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High-order Bézier curve

* For fifth-order curves, one can construct similar intermediate
points.
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The properties of Bézier curve

- LimmERR - St = 0flt = 187, B

0(0)=>'PB, (0)=PB,,(0)+ BB, ,(0)++FB,,0)=15
i=0

o = iprf,n (1)=FRB,,()+ BB, D)+ +FB,, D=1,

i=0

* XiihH | BézierfZL BT FHIEZ B AT AN .
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The properties of Bézier curve

* 2. MFRME L BT Bin(t) = Bpoin(1 — 1) , ARSI RAYIRFEVEITSE |
1CP; = Pp_;, NiRYEBézierfZLHYE X AT HEL :

0= ZP&N>ZLHWW ZP,ka)

!‘—“'—n

~ZP&A10
- 0(i-1

- XA , REARFFAEZUIAITRRAEARZE | BIRFSHE , FrSHY
FTHYBézier I IZIAAZE | RRSEEEHRIS F]*E)io

AV
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The properties of Bézier curve
- BN - BT3¢t € [0,1]8T , BernsteinZIRTNCZF -

23“,(1‘) Zz'(n—-z)'t (-6
=[1-t)+t]=1

Fl-0""=0

- H1 B,.,,,(t)—l(n 5

 NI5EBB; , (O)¥aBk 1 BézierBZERY—EINRREYN , FrlABézier
H— s EEEHZIOENOE 2.

AV
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The properties of Bézier curve

o JUIAZHZ ( Geometric Invariant ) : $5BézierBZAIAZIRABELL
IR IR AT,  BézierHHZHIFSRN R S 1= HI TR =AIFERT
NEBX.

. Bl , FEXSBézier '@%L’TM?‘“}%HT AEETL LR
PERHTAIE | RBES IR T T3 , AEENA
BIREERETIL, 2

AV
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Implementation — Cubic Bézier curve

//4HIEP0, pl, p2, p3WiEMIBezier Lk
//BHEXIA 0, 11 HEECH count
void BezierCurve (Point p0,Point pl,Point p2,Point p3,int count)
{
double t = 0.0;
dt = 1.0 / count;
moveto (pl.x,pl.y); /] EER R
for(int i=0; i<count+l; i++)

{

double F1,F2,F3,F4,x,YV; / /AR R A
double u = 1.0 - t ;
Fl =u *u * u ;
F2 = 3 * t * ® * b rﬂ'—] DummyBezier Conmajia =B &
F3 = 3 * t * t * u; ' :
P4 =" *.L£ % €3
x = p0.x * F1 + pl.x * F2 + p2.x * F3 E o3k ™ Bdp
v = p0.y 3 Elod ploy, * POt 4 p2Ly ¥ E304 D3,y ¥ F4;
lineto(xX,Y)’
t+=dt;
}
} [

Computer Graphics




Outline

* Interpolation and Approximation

* Curve Modeling
Parametric curve

Cubic Hermite interpolation
Bézier curve
B-Spline

* Surface Modeling
e Bézier surface
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Why to introduce B-Spline?

e Bezier curve has many advantages, but they have two main
shortcomings:

— The number of control points determines the degree of the
curve. many control points means high degree.
— It’s global. A control point influences the whole curve.

* B-spline curves do not suffer these drawbacks.

t —

de Boor et al. replaced Bernstein
basis with B-spline basis to
generate B-spline curve.
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B-Spline Curve

n RATEREFFES— T BR X &M Beziert LK £
», BF TEEITF:

Beézier

SR B, FeREAN A BHEZR L RZIEILHIZR, A—Eidizi

3K i 2 0 7 2 A DA s 4 s FEEA R ] A 243 ]
1 afccccsmssssessasssassssssssssse
. :: | Bi2 Bi4 ‘,p: ...... 0..93
BSpline 57 N\
1 .“ ....‘
W B By s oammre :
1 T =0

*
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B-Spline Curve

s AR EFRELS— T B &L HZfIBezieri Z8 1=
A, BFTHEH T

WD
s O

BFf: 2% ith £& w1 254 5 i P,
Bezier i £ 1 5™ 445 il 55 Al DU 3 2k, ta mT A 4 it 28 ok 44
382 F s R4 i 25 i g ESS
22 AHAT A — AN 2511 o, {5 FH 4 % il 28 382 5 A2 1 B it 28
2R AN IR Hh 28 UJU3{ i 28 A8 4 st 2 Bt 28, IF Hix2

Bl 2] LB A PH Ok, HYTP4 G E
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Definition of B-splines

* B-spline curve is piecewise polynomial curve

e Given knot vector(Th R[AIE) :
u={u0, ul, ..., ui, ..., un+k+1}

A B-spline of degree k (order k+1) with (n+1) control points is
defined as

R(u):_zn:RiNi,k (u) ue Lty Uy

%

*
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Definition of B-splines

* R;. control points, {Rj}i—y  n:control polygon
* N;(u) are basis of B-spline:

(N 1 Hu <u<uy,
o HE
u-u Ui,y — U

N _ i N I+k+1 N
) |k(u) U —u |,k—1(u)+ui+k+l_ui+l |+1,k—1(u)

.o, 0

—— _:O

EXO

AV _
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B-splines Basis

| NERPAAN

— W £ ;
KB F & IR R B 4 14 25 R 3
e : \_:\: Jw\
KB B I A IERB AR
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B-splines Basi

IS

m=
degree:

m=1

m=

m=

U

{”i }Z

—00

Computer Graphics @ ZJU

Computer Graphics

. Making Basis Functions
e
Triangular "Hat" Functions
 Cognected Using 2 Linear Segments
//\ 1R Hump of 3 Parabolic Pieces
/ \ Horizontal Tangent
P, 8
C2 o
Hump of 4 Cubic Pieces
e _~ Zero Curvature
' A
0 v w2 w3 u4
N @) 1 U, =u<u,,
- (u) =
e 0 else
u-—1u; Ui pa — U
Ni,p (l/l) = l Ni,p—l (u) + ad Ni+l.p—l (u)’
ui+p - i+p+l — iyl
9_o
0

Hongxin Zhang, 2013



B-splines Basis Vs. Bernstein

Bi,n(t) = (1 - t)Bi,n—l(t) t tBi—l,n—l(t)ﬂ l == 0319'"3’1'

1w, <su<u,,
Ni o(u) -
’ 0 else
e u-—1u. u. 1= u
U={u} . N, ()= LN )N (),
i+p i ui+p+1 _ui+l
O —
0

Computer Graphics @ ZJU Hongxin Zhang, 2013
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Cubic B-Splines

P2

« >4 control points F B

e Locally cubic (=0

o P;

— Cubics chained together, again. o



Cubic B-Splines
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e >4 control points
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Cubic B-Splines
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e >4 control points
e Locally cubic =0

— Cubics chained together, again.
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Cubic B-Splines

P2

* >4 control points A R

« Locally cubic (=0

o Ry

— Cubics chained together, again. oF,



Cubic B-Splines

aP2
* >4 control points A
 Locally cubic T or
— Cubics chained together, again. ~ il

e Curve 1s not constrained to pass through any
control points

.,"k!’z »Py------ .~P3
A, P # Sl
. /'\/ '1-4 __E“
o il P1‘:* _____________ t=1
i) v Py t=0
.......... *P . .
Pyl C A BSpline curve 1s also
3*& Py bounded by the convex
o 2 "”:::T 1 hull of 1ts control points.
1,0 __pase=™" =
e-=""

t=0 30



Cubic B-Splines

* Local control (windowing)
« Automatically C?, and no need to match tangents!

l.‘Pz
’l' “‘ P4
o /-\/ o’
P, St

= 0 ‘."Ps o _. P7




Kinds of B-Spline

— (1) Uniform B-Spline
* The knots are uniformed distributed, like 0,1,2.3,4.5,6.7

* This kind of knot vector detines uniform B-Spline basis

function

uniform B-Spline of Degree 3

i&@:) Computer Graphics



Kinds of B-Spline

— (2) Quasi-Uniform B-Spline
 Different from uniform B-Spline, it has:

— the start-knot and end-knot have repetitiveness(H. & [7) of k

— Uniform B-Spline does not retain the “end point™ property of
Bezier Curve, which means the start point and end point of
uniform B-Spline are no-longer the same as the start point and
end point of the control points. However, quasi-Uniform B-
Spline retains this “end point™ property

Quasi-uniform B-Spline curve of degree 3

Computer Graphics




Kinds of B-Spline

— (3) Piecewise Bezier Curve
» the start-knot and end-knot have repetitiveness( # & i)
of k

« all other knots have repetitiveness of k-1

* Then each curve segment will be Bezier curves

Piecewise B-Spline Curve of degree 3

Computer Graphics




Properties of B-Spline

1. Convex Hull Property

2. variation diminishing property.
3. Affine Invariance

4. local

5. piecewise polynomial

Computer Graphics




Why Introduces to NURBS?

» Disadvantage of B-Spline curve and Bezier
Curve:
— can’t accurately represent conic( |5 #E HH 2%) curve
except parabola(#i1472k).
« NURBS (Non-Uniform Rational B-Spline)
(B 204 FEBAT 2%)
— In order to find a mathematical method that could
represent conic and conicoid(_— /Z 1} [fi]) accurately.

Computer Graphics




Definition of NURBS Curve

 Definition of NURBS curve.

— NURBS Curves are defined by piecewise
rational B-Spline polynomial basis function

(73 BUAT BEBAFE 2% 22 T 22 BRI 2

i ﬂ‘}a‘ ‘P;*Mf,k (f) n

P(r) =2 => BR (1)
o.N. . (t) ™ o N
; J _ff( Rj:;ffi“)= HfJ, ;.ir(FJ
> o.N, . (1)
=0
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Propertise of NURBS Curve

* NURBS curve has similar geometric properties as

the B-Spline Curve:
— Local support (a3 F515%).
— Variation Diminishing Property(2£ & 4 s 14)
— Strong Convex hull(;"y E&L1%)
— Affine invariability({j 51 A~ 22 14)
— Differentiability( 7] fiit4)
— If the weight of a control point 1s 0. then corresponding

control point doesn’t affect the curve.
—Ifto, >».andrels.r,.,] . then p(r) =P
— Non-rational/rational Bezier curves and non-

rational B-Spline curves are special cases of
NURBS curve.

Computer Graphics




Geometric meaning of weights

» If o, increases/decreases, p also mcreases/decreases.
and the curve 1s like pulling to/pushing away trom
pomnt P,.

Computer Graphics




NURBS describe a circle: example

Three 120° circular arc describe circle : R_3
u=[0001122333]
k=3

[wi] =[1,%, 1,%,1, %, 1]
RN manaE AR

s
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Outline

* Interpolation and Approximation

* Curve Modeling
* Parametric curve
e Cubic Hermite interpolation
* Bézier curve
e B-Spline

* Surface Modeling
e Bézier surface




Bézier surface

e Bézier surfaces are a species of mathematical spline used in
computer graphics, computer-aided design, and finite element
modeling.

* As with the Bézier curve, a Bézier surface is defined by a set of
control points.

Computer Graphics




Bézier surface

- ARG ZSSHXERNIEFEEERTINXRER | ik
FEFZ2EX ), —RRRA K ERR /R RIS I |
AR =AE (ARG ) 28X, NEXRBEEAHN
ME i ARER < HE.
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The definition of Bézier surface in rectangular domain

« SEERLSEIXIE[0, 1] x [0, 1]/ , WSKAIFKEFR ( tensor product )
57538 Bézier curve HE R Bézier surface,

« BET (n+ D(m + DAREEIREP; (@ =0,1,..,m;j =0,1,...,m)
MFRn x mRSZLHIE an x miRBézierllE , B
P (u, v) =228, (&) B () P, (u, v€ [0, 1])
« IXEB,; ,, (W)FB; m (u) /IBernsteinELRREL , MR FALLERERZTNR
P;j(i=0,1,..,n;j = 0,1, ..., m) PIEBATURFTZABIZEINGE |, FRA
BézierHEIHY4FALERIFS,
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Biquadratic Bézier surface

« Hn=m=207 , Bbiquadratic Bézier surface (X _/XHHME]) :

P (u, U) - Z‘iBg,z (u) Bj,z (’U) Pg (Ius .UE [0: 1])

i=0j=0

- ZHHERYASRID R IEZERENIMIZL | SEPR EEASAEMAS LRI NIR , HEs
MARTURRRE 4D,

» RE— APy ATLARSRIZHI HEAIAZA |, EIHEERIM AT LB 126 Py
SEES,

s
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Bicubic Bézier surface

« Hn=m=307 , Bbicubic Bézier surface (XX = KEHH) :
P (u, ) =558, (u) By (0) Py (u, o€ [0, 1)

i=0j=0

¢ ﬁ%ﬁBE?E/_J_T . Plu,r) = [Bos(u),B3(u),Bys(u), Bys(w)]

[Py Py Py Pyl Bes (v)]

PIO Pn P:z PIB 31,3 (’U)
X , v& |0, 1

Py Py Pn Pyl By (v) (u, v& [0, 1])

‘P30 P3l P3z Pa}““Ba,sx (’U)*
- H—EEM : P(u,v) = UBPB"V'

* ,\':F' : 1] | 0 0 07 " Po Po Pp Pyl
, > : -

I uﬁ e -3 3 0 0 P P, P, P, P,

" 3 -6 3 0 Py Py, Py, Py
_ H,BJ -~ 1 3 -3 1 - Py, Py, P, Py, -
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Bicubic Bézier surface

* HHERY4ZZIDFREBE = IKBézier
% , HEA ZA%EMWM
TNRCRIBRE. BB EEEAER
ANTRPy , Pia oy Py Py

B9 E K= HE P EBEIAZIR.

*
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Utah Teapot

AR FPREL GRELZ—
n FFAFGRG363INE g S & L H32%Bézierd
& A




Bézier surface in triangular domain

« BXRA=AFSHXEF{(wv,W)|u,v,w =0, u+v+w=1}5, EE%
1EB-MBY G AR M1EBezier BHE.

o XIFAEERN=1"TNRP, , Py, PEUEILAERR— =/ | Rit=/#
HREE EE— R PRI LARRA

P(u, v, w> :uP0+’UP1+’wP2 (u+v+w=1)

« Hih 1 (u, v, w)FRAP(, v, w)KTFP,, P, P,AIEIALR,

Py (1, 0, O

e H0<u+v+w<<18, Py, v, wiiT
PO 1 Pl I Pzgﬂ}ﬁﬂgzﬁﬁzzp\]o

PZ (0, 09 1)
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The definition of Bézier surface in triangular domain

- ENX S HE h=E EAIn/RBézierdHH :

P (u, v, w) = 2 PukBy,, (u, v, w)

H-j+j n

(u, v, w=0; u,+-'v_+w=.1)

° /M -

S . Poon

n n' i ok
ng (Uz, v, W) l,‘ ]' k‘ Uf

(t+j+k=n; u+v+w=1)
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Quadratic Bézier surface
- Hn=20Y , AILAEEEH " /RBézierHH

P(u, v, w) = > PyBY (u, v, w)

l+j+k=

— 542 2 2
= u" Py + 0" Poy + w” Py + 2uPyyg + 2uwP g + 2vwPy),

« M\ EXFBJLLEH , —/KBézierlHE .
STERMAORTNRMEE , Bt , &
FoARTTE RO R HZRTET,
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Cubic Bézier surface

. =)RBézierfEA :
P (u, v, w) = 2 PuB, (u, v, w)

i+j+k=3

_ .3 3 ) 3
= U Pyy + v Py + w” Py +3u” 0Py + 3un® Py

+ 31’ WPy, + 3uw’ Py, + 307 WPy, + 3w’ Py, + 6uwPy,,

P o0

« FGTE S =/RBézierEHEAYIN
ij_]_%]-ﬁ““ [} /\WMB}F/JKE)B_J ?300‘
— N EEITRRP 1 KRB AT,

Poao
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Non-uniform rational B-spline (NURBS) surface

* Non-uniform rational basis spline (NURBS) is a mathematical
model commonly used in computer graphics for generating and
representing curves and surfaces.

Control

Original
Polymesh

NURBS
Surface
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Least square surface

* If you have a data set (x,,v,, 2, (x, 95,2, , ..., (x,, ¥, zn) and
the best surface z = f(x,y) should be with the property as
follows

Minimum Least Square error

E =Y (6. y)-2,)

wx
R

*
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The continuity of the curve and surface

RN VAXISRERISEPRELAEE | BT 3RSERIIRIESRE |
C" BSEPRIEEIESE TEE’J*&?—%LK JUIEERIEGCMRBEE (B480) &
LRECTTEE,  GTRUESERIR TR (SEUL ) 1.

— —— " MREFERER. N62
L) E v O g \‘\
% g LORH 62 i 8
"EE FeiE 61/62 2 o 5
5 T somEs, BARE o 3 >
la .
& & -y o
: : P Y
® n th _
g RN 62 SomiAR TG0 O .
?ﬂ \ 61 e i BBARE G/
p- = Bp -
%é y_ GO N, - /-*“i
o GO % / A\ -2 s
o !
GO
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The continuity of the curve and surface

+ C° -ERERMEPRIEFEE— T H A (BIFRNEREE ) .
—XIN TSRS, IEREE— I aHR , FESII
H—S2 (BIYEXE ) 2HEERY.
C* —JINTHIEZTTIERI2M S48, BIRE—M SERI M SEEMER.

Quality of Surface Transition [echnical Confinuity Evaluation

/ © \ / ¢ \ /- 2\ o
/ Positional Tangent Curvature ""Positiunalv‘\: ,,«""/Tan ent \ /'/Curvafure‘
g / \ \ : g . ; \

o
—
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The continuity in real world

Positional Tangent Curvature Positional Tangent B it

Positional Tangent Curvature
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Simplified cases

EZ [curvature)
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